SUGGESTED SOLUTIONS TO HOMEWORK I

Solution 1. (1) Since the characteristic system gives

$$
\frac{d x}{x}=\frac{d y}{y}=\frac{d u}{x e^{-u}}
$$

therefore by Lagrange theorem, the general solution is determined by

$$
G\left(\frac{x}{y}, x-e^{u}\right)=0
$$

where $G \in C^{1}$ is an arbitrary function.
(2) Since the characteristic system gives

$$
\frac{d x}{x\left(y^{2}+u\right)}=\frac{d y}{y\left(x^{2}+u\right)}=\frac{d u}{u\left(x^{2}-y^{2}\right)}
$$

therefore by Lagrange theorem, the general solution is determined by

$$
G\left(x y u, x^{2}+y^{2}-2 u\right)=0
$$

where $G \in C^{1}$ is an arbitrary function.
Solution 2. (1) We parametrise the curve carrying the initial data by

$$
x(0, s)=0, \quad y(0, s)=s, \quad u(0, s)=\cos s
$$

Since the characteristic equations are given by

$$
\begin{aligned}
& \frac{d x(t, s)}{d t}=1 \\
& \frac{d y(t, s)}{d t}=x(t, s) \\
& \frac{d u(t, s)}{d t}=y(t, s)
\end{aligned}
$$

therefore

$$
x(t, s)=t, \quad y(t, s)=\frac{t^{2}}{2}+s, \quad u(t, s)=\frac{t^{3}}{6}+t s+\cos s
$$

solving t, s in terms of x, y, the solution is obtained as

$$
u(x, y)=x y-\frac{1}{3} x^{3}+\cos \left(y-\frac{x^{2}}{2}\right)
$$

(2) We parametrise the curve carrying the initial data by

$$
x(0, s)=s, \quad y(0, s)=1, \quad u(0, s)=2 s
$$

Since the characteristic equations are given by

$$
\begin{aligned}
& \frac{d x(t, s)}{d t}=u(t, s), \\
& \frac{d y(t, s)}{d t}=y(t, s), \\
& \frac{d u(t, s)}{d t}=x(t, s),
\end{aligned}
$$

therefore

$$
x(t, s)=\frac{3}{2} s e^{t}-\frac{1}{2} s e^{-t}, \quad y(t, s)=e^{t}, \quad u(t, s)=\frac{3}{2} s e^{t}+\frac{1}{2} s e^{-t}
$$

solving t, s in terms of x, y, the solution is obtained as

$$
u(x, y)=x \frac{3 y^{2}+1}{3 y^{2}-1}, \quad y>\frac{\sqrt{3}}{3}
$$

Solution 3. (1) From the equation, since the characteristic system gives

$$
\frac{d x}{1}=\frac{d y}{x}
$$

therefore the solution is constant along the characteristic curve $\Gamma: y-\frac{x^{2}}{2}=c$, where $c \in \mathbb{R}$ is an arbitrary constant. Note that Γ intersects the x-axis at the points $(\pm \sqrt{-2 c}, 0)$ for $c \leq 0$, therefore, it is necessary to require f to be an even function for a solution to exist.
(2) Since the characteristic curve Γ intersects the x-axis only for $c \leq 0$, therefore the solution is uniquely determined by the initial condition for $\left\{(x, y): y-\frac{x^{2}}{2} \leq 0\right\}$.

Solution 4. (1) Since

$$
\frac{d f}{d s}\left(s, x_{0}+t v, v\right)=\left(\partial_{t} f+v \cdot \nabla_{x} f\right)\left(s, x_{0}+s v, v\right)=0,
$$

therefore

$$
f(t, x, v)=f^{0}(x-s v, v) .
$$

Moreover, since $f^{0} \in C^{1}\left(\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3}\right)$, we have $f \in C^{1}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3}\right)$.
(2) For $p=\infty$,

$$
\|f(t)\|_{L^{\infty}\left(\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3}\right)}=\left\|f^{0}\right\|_{L^{\infty}\left(\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3}\right)} .
$$

For $1 \leq p<\infty$, by change of variables $y=x-t v$,

$$
\begin{aligned}
\|f(t)\|_{L^{p}\left(\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3}\right)} & =\int_{\mathbb{R}_{x}^{3}} \int_{\mathbb{R}_{v}^{3}}\left|f^{0}(x-s v, v)\right|^{p} d v d x \\
& =\int_{\mathbb{R}_{y}^{3}} \int_{\mathbb{R}_{v}^{3}}\left|f^{0}(y, v)\right|^{p} d v d y \\
& =\left\|f^{0}\right\|_{L^{p}\left(\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3}\right)} .
\end{aligned}
$$

(3) Since

$$
\begin{aligned}
\left|\int_{\mathbb{R}_{v}^{3}} f(t, x, v) d v\right| & \leq \int_{\mathbb{R}_{v}^{3}}\left|f^{0}(x-t v, v)\right| d v \\
& \leq \int_{\mathbb{R}_{v}^{3}} \sup _{w \in \mathbb{R}^{3}}\left|f^{0}(x-t v, w)\right| d v \\
& \leq \frac{1}{t^{3}} \int_{\mathbb{R}_{v}^{3}} \sup _{w \in \mathbb{R}^{3}}\left|f^{0}\left(v^{\prime}\right)\right| d v^{\prime}
\end{aligned}
$$

